بررسی پایداری طرح تفاضلات متناهی غیراستاندارد برای حل معادلات دیفرانسیل با مشتقات نسبی خطی از مرتبه کسری
Authors
abstract
عمل گرهای مشتق و انتگرال کسری مفهوم جدیدی از مشتق و انتگرال از مرتبۀ دل خواه است. معادلۀ دیفرانسیل با مشتقات نسبی )[1](pde که مشتقات موجود در آن بتوانند از مرتبه کسری باشند معادلۀ دیفرانسیل با مشتقات نسبی کسری ([2](fpde گفته می شود. امروزه این معادلات به دلیل کاربرد زیاد توجه ویژه ای را به خود معطوف داشته اند. در این مقاله حالت نسبتاً کلی از یک fpde مطرح می شود، برای به دست آوردن طرحی عددی، مشتقات کسری موجود در معادله با استفاده یکی از تعاریف متداول گرانوالد- لتنیکوف[3]، ریمان- لیوویل[4] و کاپتو[5] جای گزین می شوند و برای بهبود جواب عددی، مشتقات نسبی موجود در معادله با استفاده از طرح های تفاضلی غیراستاندارد (nsfd[6]) گسسته سازی می شوند. سپس پایداری طرح عددی حاصل بررسی می گردد و ثابت می شود روش معرفی شده غیرمشروط پایدار است. در پایان با هدف تأیید نتایج تئوری، تکنیک معرفی شده برای حل معادله موج با مرتبۀ کسری که در فیزیک و شاخه های آن کاربرد فراوانی دارد به کار می رود. نتایج عددی مؤید یافته های تئوری است و نشان از کارایی این تکنیک دارد. *نویسنده مسئول [email protected] 1. partial differential equation 2. fractional partial differential equation 3. grundwald-letnikov 4. riemann-liouville 5.caputo 6. non-standard finite difference
similar resources
بررسی پایداری طرح تفاضلات متناهی غیر استاندارد برای حل معادلات دیفرانسیل با مشتقات نسبی از مرتبه کسری
عملگر های مشتق و انتگرال کسری مفهوم جدیدی از مشتق و انتگرال از مرتبه دلخواه می باشد. معادله دیفرانسیل با مشتقات نسبی) (pde که مشتقات موجود در آن بتوانند از مرتبه کسری باشند معادله دیفرانسیل با مشتقات نسبی کسری ( (fpde گفته می شود. امروزه این معادلات به دلیل کاربرد زیاد توجه ویژه ای را به خود معطوف داشته اند. در این مقاله حالت نسبتاً کلی از یک fpde مطرح می شود، برای بدست آوردن یک طرح عددی، مشتقات...
full textروش هم محلی ژاکوبی با مرتبه بالا برای معادلات دیفرانسیل کسری تک مرتبه ای غیر خطی
This article has no abstract.
full textبهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری
تاکنون روش تجزیه آدومیان بهطور گستردهای برای حل انواع معادلات دیفرانسیل بهکار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روشهای دیگر ازجمله روشهای هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جوابهای تحلیلی-تقریبی از انواع معادلات دیفرانسیل میباشد، در این مقاله سعی شده با بهکارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...
full textساختن روشهای تفاضلات متناهی مبتنی بر توابع پایه شعاعی و استفاده از آنها برای حل معادلات دیفرانسیل با هندسه دلخواه
In this paper we, obtain the weight of radial basis finite difference formula for some differential operators. These weights are used to obtain the local truncation error in powers of the inter-node distance and the shape parameter of radial basis functions. We show that for each difference formula, there is a value of the shape parameter for which RBF-FD formulas are more accurate than the cor...
full textتقریب خطی برای معادلات دیفرانسیل غیر خطی و مسئله پایداری
در این مقالع بعنوان مثال معادله دیفرانسیل گسترش جمعیت تحت مطالعه و نقاط استثنایی (نقاط حل) این معادله از نقطه نظر پایداری و ناپایداری مورد بحث قرار گرفته است . طی این مثال و مثالی دیگر نشان داده شده که همیشه خطی کردن معادلات دیفرانسیل غیر خطی نتیجه مطلوب را نخواهد داد. بالاخره در قسمت آخر تعریفات ریاضی پایداری از نقطه نظر لاپلاس لیاپولف و پوانکاره و شرط کافی برای اینکه بتوان معادله دیفرنسیل غیر...
full textبهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری
تاکنون روش تجزیه آدومیان بهطور گستردهای برای حل انواع معادلات دیفرانسیل بهکار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روشهای دیگر ازجمله روشهای هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جوابهای تحلیلی-تقریبی از انواع معادلات دیفرانسیل میباشد، در این مقاله سعی شده با بهکارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...
full textMy Resources
Save resource for easier access later
Journal title:
پژوهش های ریاضیجلد ۱، شماره ۱، صفحات ۶۳-۷۴
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023